

Attached are page(s) from the 2011 Hilti North American Product Tech Guide. For complete details on this product, including data development, product specifications, general suitability, installation, corrosion, and spacing and edge distance guidelines, please refer to the Technical Guide, or contact Hilti.

> Hilti, Inc. 5400 South 122nd East Avenue Tulsa, OK 74146

> > 1-800-879-8000 www.hilti.com

3.2.4.1 Product Description

Hilti HIT-RE 500-SD Adhesive Anchoring System is an injectable two-component epoxy adhesive. The two components are kept separate by means of a dualcylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold.

Hilti HIT-RE 500-SD Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-N and HIS-RN internally-threaded inserts or deformed reinforcing bar installed in cracked or uncracked concrete. The primary components of the Hilti Adhesive Anchoring System are:

- Hilti HIT-RE 500-SD adhesive packaged in foil packs
- Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

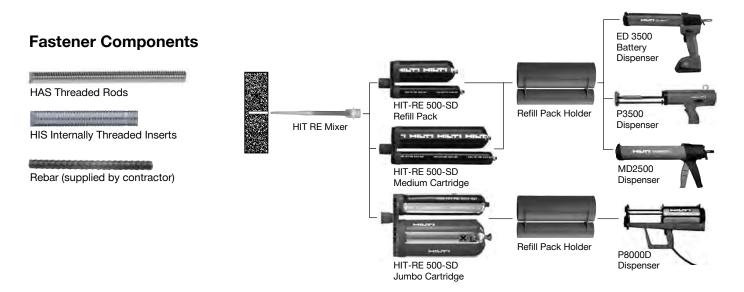
Product Features

- Superior bond performance
- Seismic qualified per IBC®/IRC® 2009, IBC®/IRC® 2006, IBC®/IRC® 2003 and IBC®/IRC® 2000. Please refer to ESR-2322 (ICC-ES AC308) for Seismic Design Category A through F
- Use in diamond cored or pneumatic drilled holes and under water up to 165 feet (50 m)
- Meets requirements of ASTM C 881-90, Type IV, Grade 2 and 3, Class A, B, C except gel times
- Meets requirements of AASHTO specification M235, Type IV, Grade 3, Class A, B, C except gel times
- Mixing tube provides proper mixing, eliminates measuring errors and minimizes waste
- Contains no styrene; virtually odorless
- Extended temperature range from 41°F to 104°F (5°C to 40°C)
- Excellent weathering resistance; Resistance against elevated temperatures

3.2.4.1	Product Description
3.2.4.2	Material Specifications
3.2.4.3	Strength Design
3.2.4.4	Technical Data
3.2.4.5	Installation Instructions
3.2.4.6	Ordering Information

Listings/Approvals

ICC-ES (International Code Council) ESR-2322 NSF/ANSI Std 61 certification for use in potable water European Technical Approval ETA-07/0260 COLA (City of Los Angeles) RR 25700



Independent Code Evaluation

IBC [®] /IRC [®] 2009 (ICC-ES AC308)	
IBC®/IRC® 2006 (ICC-ES AC308)	
IBC®/IRC® 2003 (ICC-ES AC308)	
IBC®/IRC® 2000 (ICC-ES AC308)	
FBC 2007	
LEED [®] : Credit 4.1-Low Emitting	
Materials	

The Leadership in Energy and Environmental Design (LEED®) Green Building Rating system[™] is the nationally accepted benchmark for the design, construction and operation of high performance green buildings.

Guide	Spe	cifica	tions
-------	-----	--------	-------

Master Format Section:

Previous 2004 Format

03250	03 16 00	(Concrete Anchors)
Related	Sections:	
03200	03 20 00	(Concrete
		Reinforcing)
05050	05 50 00	(Metal
		Fabrications)
05120	05 10 00	(Structural Metal
		Framing)

Injectable adhesive shall be used for installation of all reinforcing steel dowels or threaded anchor rods and inserts into existing concrete. Adhesive shall be furnished in side-by-side refill packs which keep component A and component B separate. Side-by-side packs shall be designed to compress during use to minimize waste volume. Side-by-side packs shall also be designed to accept static mixing nozzle which thoroughly blends component A and component B and allows injection directly into drilled hole. Only injection tools and static mixing nozzles as recommended by manufacturer shall be used. Manufacturer's instructions shall be followed. Injection adhesive shall be formulated to include resin and hardener to provide optimal curing speed as well as high strength and stiffness. Typical curing time at 68°F (20°C) shall be approximately 12 hours.

Injection adhesive shall be HIT-RE 500-SD, as furnished by Hilti.

Anchor Rods shall be furnished with chamfered ends so that either end will accept a nut and washer. Alternatively, anchor rods shall be furnished with a 45 degree chisel point on one end to allow for easy insertion into the adhesive-filled hole. Anchor rods shall be manufactured to meet the following requirements:

- 1. ISO 898 Class 5.8
- 2. ASTM A 193, Grade B7 (high strength carbon steel anchor);
- AISI 304 or AISI 316 stainless steel, meeting the requirements of ASTM F 593 (condition CW).

Special order length HAS Rods may vary from standard product.

Nuts and Washers of other grades and styles having specified proof load strength greater than the specified grade and style are also suitable. Nuts must have specified proof load strength equal to or greater than the minimum tensile strength of the specified threaded rod.

3.2.4.2 Material Specifications

Material Properties of Cured Adhesive

Bond Strength ASTM C882-91 ¹ 2 day cure 7 day cure	12.4 MPa 12.4 MPa	1800 psi 1800 psi
Compressive Strength ASTM D-695-961	82.7 MPa	12,000 psi
Compressive Modulus ASTM D-695-961	1493 MPa	0.22 x 10 ⁶ psi
Tensile Strength 7 day ASTM D-638-97	43.5 MPa	6310 psi
Elongation at break ASTM D-638-97	2.0%	2.0%
Heat Deflection Temperature ASTM D-648-95	63°C	146°F
Absorption ASTM D-570-95	0.06%	0.06%
Linear Coefficient of Shrinkage on Cure ASTM D-2566-86	0.004	0.004
Electrical resistance DIN IEC 93 (12.93)	6.6 x 10 ¹³ Ω/m	1.7 x 10 ¹² Ω/in.

1 Minimum values obtained as a result of three cure temperatures (23°, 40°, 60°F)

3.2.4.3 Strength Design^{1,2}

Design strengths are determined in accordance with ACI 318-08 Appendix D (ACI 318) and supplemented by ICC-ES ESR-2322. Design parameters are provided in Table 7 through Table 34. Strength reduction factors Φ as given in ACI 318 D.4.4 shall be used for load combinations calculated in accordance with Section 1612.2 of the UBC or Section 1605.2 of the 2000, 2003 or 2006 IBC. Strength reduction factors f as given in ACI 318 D.4.5 shall be used for load combinations calculated in accordance with Section 1909.2 of the UBC.

This section provides amendments to ACI 318-08 Appendix D (ACI 318) as required for the strength design of adhesive anchors. In conformance with ACI 318-08, all equations are expressed in inch-pound units.

D.4.1.2 — In Eq. (D-1) and (D-2), N_n and V_n are the lowest design strengths determined from all appropriate failure modes. N_n is the lowest design strength in tension of an anchor or group of anchors as determined from consideration of N_{sa} , either N_a or N_{ag} and either N_{cb} or N_{cbg} . V_n is the lowest design strength in shear of an anchor or a group of anchors as determined from consideration of: V_{sa} , either V_{cb} or V_{cbg} , and either V_{co} or V_{cpg} .

D.4.1.4 — For adhesive anchors installed overhead and subjected to tension resulting from sustained loading, Eq. (D-1) shall also be satisfied taking $N_n = 0.75 N_a$ for single anchors and $N_n =$ 0.75 N_{ag} for groups of anchors, whereby N_{ua} is determined from the sustained load alone, e.g., the dead load and that portion of the live load acting that may be considered as sustained. Where shear loads act concurrently with the sustained tension load, interaction of tension and shear shall be checked in accordance with Section D.4.1.3.

D.5.2.9 — The limiting concrete strength of adhesive anchors in tension shall be calculated in accordance with D.5.2.1 to D.5.2.8 where the value of k_c to be used in Eq. (D-7) shall be:

- k_{c,cr} where analysis indicates cracking at service load levels in the anchor vicinity (cracked concrete)
- k_{c,uncr} where analysis indicates no cracking at service load levels in the anchor vicinity (un-cracked concrete)

D.5.3.7 — The nominal bond strength of an adhesive anchor $N_{\rm a}$ or group of adhesive anchors $N_{\rm ag}$ in tension shall not exceed

(a) for a single anchor

$$N_{a} = \frac{A_{Na}}{A_{a0}} \cdot \Psi_{p,Na} \cdot N_{a0}$$
 (D-14a)

(b) for a group of anchors

$$(D-14b) = \frac{A_{Na}}{A_{a0}} \cdot \psi_{ed,Na} \cdot \psi_{g,Na} \cdot \psi_{ec,Na} \cdot \psi_{p,Na} \cdot N_{a0}$$

where

Nag

 A_{na} is the projected area of the failure surface for the anchor or group of anchors that shall be approximated as the base of the rectilinear geometrical figure that results from projecting the failure surface outward a distance from the centerlines of the anchor, or in the case of a group of anchors, from a line through a row of adjacent anchors. A_{na} shall not exceed nA_{na0} where n is the number of anchors in tension in the group. (Refer to ACI 318 Figures RD.5.2.1a and RD.5.2.1b and replace the terms 1.5h_{ef} and 3.0h_{ef} with c_{cr,Na} and s_{cr Na}, respectively.) A_{Na0} is the projected area of the failure surface of a single anchor without the influence of proximate edges in accordance with Eq. (D-14c):

$$A_{Na0} = \left(s_{cr,Na}\right)^{2}$$
 (D-14c) with

s_{cr.Na} = as given by Eq. (D-14h)

D.5.3.8 — The critical spacing and critical edge distance shall be calculated as follows:

$$s_{cr,Na} = 20 \cdot d \cdot \sqrt{\frac{\tau_{k,uncr}}{1,450}} \le 3 \cdot h_{ef} \quad (D-14h)$$

$$c_{cr,Na} = \frac{s_{cr,Na}}{2}$$
(D-14i)

D.5.3.9 — The basic strength of a single adhesive anchor in tension in cracked concrete shall not exceed

$$N_{aO} = \tau_{kcr} \cdot \pi \cdot d \cdot h_{ef}$$
 (D-14)

D.5.3.10 — The modification factor for the influence of the failure surface of a group of adhesive anchors is

$$\psi_{g,Na} = \psi_{g,NaO} + \left[\left(\frac{S}{S_{cr,Na}} \right)^{0.5} \cdot (1 - \psi_{g,NaO}) \right] \ge 1.0$$

where

 $\psi_{g,Nao} = \sqrt{n} - \left[\left(\sqrt{n} - 1 \right) \left(\frac{\tau_{k,cr}}{\tau_{k,max,cr}} \right)^{1.5} \right] \ge 1.0$

With n as the number of tension-loaded adhesive anchors in a group.

$$\tau_{\rm k,max,cr} = \frac{k_{\rm c,cr}}{\pi \cdot d} \sqrt{h_{\rm ef} \cdot f'_{\rm c}} \qquad (D-14m)$$

D.5.3.11 — The modification factor for eccentrically loaded adhesive anchor groups is

$$\Psi_{ec,Na} = \frac{1}{\frac{2e'_{n}}{S_{cr,Na}}} \le 1.0$$
 (D-14n)

Eq. (D-14n) is valid for $e'_{N} \leq \frac{s}{2}$

1 ACI 318-05 or 318-02 may also be used. The section references and terminology are different from those given in this section.

2 This section 3.2.4.3 is a reproduction of the content of ICC-ESR 2322, representing the opinions and recommendations of ICC-ES.

If the loading on an anchor group is such that only some anchors are in tension, only those anchors that are in tension shall be considered when determining the eccentricity e'_{N} for use in Eq. (D-14n).

In the case where eccentric loading exists about two orthogonal axes, the modification factor $\psi_{ec,Na}$ shall be computed for each axis individually and the product of these factors used as $\psi_{ec,Na}$ in Eq. (D-14b).

D.5.3.12 — The modification factor for the edge effects for single adhesive anchors or anchor groups loaded on tension is:

$$\begin{split} \psi_{\text{ed},\text{Na}} &= 1.0 \text{ when } c_{\text{a,min}} \geq c_{\text{cr,Na}} \quad \text{(D-14o)} \\ \text{for } C_{\text{a,min}} < C_{\text{cr,Na}} \\ \psi_{\text{ed,Na}} &= \left(0.7 + 3.1 \frac{c_{\text{a,min}}}{c_{\text{cr,Na}}}\right) \leq 1.0 \quad \text{(D-14p)} \end{split}$$

D.5.3.13 — When an adhesive anchor or a group of adhesive anchors is located in a region of a concrete member where analysis indicates no cracking at service load levels, the nominal strength N or N_{an} of a single adhesive anchor or a group of adhesive anchors shall be calculated according to Eq. (D-14a) and Eq. (D-14b) with $\tau_{k,uncr}$ substituted for $\tau_{k,cr}$ in the calculation of the basic strength in accordance with Eq. (D-14j). $\tau_{\rm k,uncr}$ shall be established based on tests in accordance with AC308. The factor $\tau_{_{q,Na0}}$ shall be calculated in accordance with Eq. (D-14l) whereby the value of $\tau_{k,max,uncr}$ shall be calculated in accordance with Eq. (D-14q) and substituted for $\tau_{\!_{k,\text{max,cr}}}$ in Eq. (D-14l).

$$\tau_{k,max,uncr} = \frac{k_{c,uncr}}{\pi \cdot d} \sqrt{h_{ef} \cdot f'}_{c} \qquad (D-14q)$$

D.5.3.14 — When an adhesive anchor or a group of adhesive anchors is located in a region of a concrete member where analysis indicates no cracking at service load levels, the modification factor shall be taken as

$$(\text{D-14r}) \label{eq:p_na} (\text{p}_{\text{p,Na}} = 1.0 \qquad \qquad \text{when } \textbf{c}_{\text{a,min}} \geq \textbf{c}_{\text{ac}}$$

(D-14s)

$$\psi_{p,Na} = \frac{\text{max} | c_{a,min}; c_{cr,Na} |}{c_{ac}} \text{ when } c_{a,min} < c_{ac}$$

For all other cases, $\psi_{p,Na}$ = 1.0.

D.6.3.2 — The nominal pryout strength of an adhesive anchor or group of adhesive anchors shall not exceed

(a) for a single adhesive anchor

$$V_{cp} = \min |k_{cp} \cdot N_a; k_{cp} \cdot N_{cb}| \qquad (D-28a)$$

(b) for a group of adhesive anchors

 $V_{cpg} = \min |k_{cp} \cdot N_{ag}; k_{cp} \cdot N_{cbg}| \quad (D-28b)$ where

$$k_{co} = 1.0$$
 for $h_{ef} < 2.5$ in. (64 mm)

 $k_{cp} = 2.0$ for $h_{ef} \ge 2.5$ in. (64 mm)

 N_a is calculated in accordance with Eq. (D-14a)

 N_{ag} is calculated in accordance with Eq. (D-14b)

 $N_{\rm cb},\,N_{\rm cbg}$ are determined in accordance with D.5.2.8

D.8.7 — For adhesive anchors that will remain untorqued, the minimum edge distance shall be based on minimum cover requirements for reinforcement in 7.7. For adhesive anchors that will be torqued, the minimum edge distance and spacing shall be taken as 6d_o and 5d_o, respectively, unless otherwise determined in accordance with AC308.

Bond strength determination:

Bond strength values are a function of concrete condition (cracked, un-cracked), drilling method (hammer drill, core drill) and installation conditions (dry, water-saturated, etc.). Bond strength values shall be modified with the factor k_{nn} for cases where holes are drilled in water-saturated concrete (k_{ws}), where the holes are water-filled at the time of anchor installation (k_{wf}), or where the application is carried out underwater (k_{uw}).

Where applicable, the modified bond strength values shall be used in lieu of $\tau_{k,cr}$ and $\tau_{k,uncr}$ in Equations (D-14d), (D-14f), (D-14f), (D-14j), (D-14m), and (D-14o). The resulting nominal bond strength shall be multiplied by the associated strength reduction factor Φ_{nn} .

Minimum member thickness h_{min} , anchor spacing s_{min} and edge distance c_{min} :

In lieu of ACI 318 Section D.8.3, values of c_{min} and s_{min} as given in this section are applicable. Likewise, in lieu of

ACI 318 Section D.8.5, minimum member thicknesses h_{min} as given in this section are applicable.

Critical edge distance c_{ac}:

In lieu of ACI 318 Section D.8.6, c_{ac} may be taken as follows:

for h = h_{min} :
$$c_{ac} = \frac{3(h_{ef})^2}{32d} + 1.63h_{ef}$$

for h ≥ h_{ef} + 5 $(c_{a,min})^{3/4}$

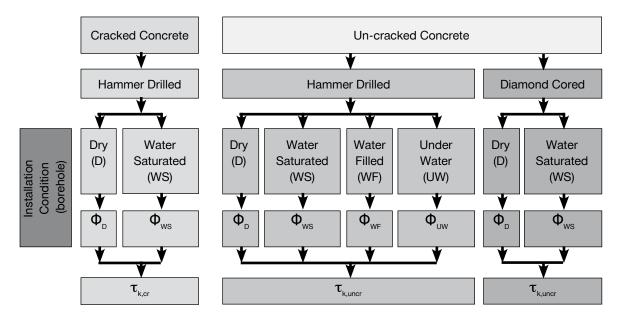
where

$$\begin{split} h_{ef} &\leq 8d: c_{ac} = 1.5h_{ef} \\ h_{ef} &> 8d: c_{ac} = \frac{(h_{ef})^2}{48d} + 1.33h_{ef} \\ \text{for all other } h &\geq h_{min} : c_{ac} = 2.5h_{ef} \end{split}$$

Design strength in SDC C, D, E and F:

Where anchors are designed to resist earthquake forces in structures assigned to Seismic Design Categories C, D, E or F, the anchor strength shall be adjusted in accordance with 2006 IBC Section 1908.1.16. The nominal steel shear strength, V_{sa} , shall be adjusted by $\alpha_{V,seis}$. The nominal bond strength k_{cr} shall be adjusted by $\alpha_{N,seis}$.

3.2.4.4 Technical Data


Table 1 — Design Table Index

Design strength ¹		Threaded rod		Hilti HIS internally threaded insert		Deformed reinforcement			
		fractional	metric	fractional	metric	US	EU	Canadian	
Steel	N _{sa} , V _{sa}		Table 7	Table 11	Table 15	Table 19	Table 23	Table 27	Table 31
Concrete	crete $N_{pn}, N_{sb}, N_{sbg}, N_{cb}, N_{cbg}, V_{cb}, V_{cbg}, V_{cp}, V_{cpg}$		Table 8	Table 12	Table 16	Table 20	Table 24	Table 28	Table 32
Bond ² N _a , N _a		hammer-drilled holes	Table 9	Table 13	Table 17	Table 21	Table 25	Table 29	Table 33
	IN _a , IN _{ag}	diamond cored holes	Table 10	Table 14	Table 18	Table 22	Table 26	Table 30	Table 34

1 Ref. ACI 318 Section D.4.1.2

2 See Section 3.2.4.3.

Bond Strength Design Flowchart

Table 2 — Tensile Properties of Common Carbon Steel Threaded Rod Materials¹

Threaded Rod Specification		Minimum specified ultimate strength $f_{\rm uta}$	$\begin{array}{c} \mbox{Minimum} \\ \mbox{specified yield} \\ \mbox{strength } 0.2\% \\ \mbox{offset } f_{\rm ya} \end{array}$	$f_{\rm uta}/f_{\rm ya}$	Elongation, min. % ⁵	Reduction of Area,min. %	Specification for nuts ⁶
ASTM A 193² Grade B7 ≤ 2-1/2 in. (≤ 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A 563 Grade DH
ASTM F 568M ³ Class 5.8 M5 (1/4 in.) to M24 (1 in.) (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	DIN 934 (8-A2K ASTM A 563 Grade DH ⁷
ISO 898-1 ⁴ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 (8-A2K)

1 Hilti HIT-RE 500-SD may be used in conjunction with all grades of continuously threaded carbon steel rod (all-thread) that conform to the code and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

2 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

3 Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

4 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs

5 Based on 2-in. (50 mm) gauge length except for A193 and A449, which are based on a gauge length of 4D and ISO 898 which is based on 5D.

6 Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

7 Nuts for fractional rods.

Table 3 — Tensile Properties of Common Stainless Steel Thraded Rod Materials¹

Threaded Rod Specification		Minimum specified ultimate strength $f_{\rm uta}$	Minimum specified yield strength 0.2% offset f_{ya}	$f_{ m uta}/f_{ m ya}$	Elongation, min. %	Reduction of Area,min. %	Specification for nuts⁵
ASTM F 593 ² CW1 (316) 1/4 to 5/8 in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	F 594
ASTM F 593 ² CW2 (316) 3/4 to 1-1/2 in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	_	F 594
ISO 3506-1 ³ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	_	ISO 4032
ISO 3506-1 ³ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.00	40	-	ISO 4032

1 Hilti HIT-RE 500-SD may be used in conjunction with all grades of continuously threaded stainless steel rod (all-thread) that conform to the code and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

2 Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

3 Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, screws and studs

4 Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. Differing grades of steel may affect corrosion resistance.

Table 4 — Tensile Properties of Fractional and Metric HIS-N and HIS-RN Inserts

Hilti HIS and HIS-R Inserts	Minimum specified ultimate strength $f_{_{ m uta}}$	Minimum specified yield strength f_{ya}	
	MPa	490	410
DIN 1651 9SMNPB28K Carbon Steel 3/8 and M8 to M10	(psi)	(71,050)	(59,450)
DIN 1651 0SMNDD29K Certeen Steel 1/0 to 2/4 and M10 to M20	MPa	460	375
DIN 1651 9SMNPB28K Carbon Steel 1/2 to 3/4 and M12 to M20	(psi)	(66,700)	(54,375)
	MPa	700	350
DIN 17440 X5CrNiMo17122 Stainless Steel	(psi)	(101,500)	(50,750)

Table 5 — Tensile Properties of Common Bolts, Cap Screws and Studs for Use with HIS-N and HIS-RN Inserts^{1,2}

Bolt, Cap Screw or Stud Specification		Minimum specified ultimate strength $f_{\rm uta}$	Minimum specified yield strength 0.2% offset f_{ya}	$f_{\rm uta}/f_{\rm ya}$	Elongation, min. %	Reduction of Area, min.	Specification for nuts⁵
SAE J429 ³ Grade 5	psi 120,000 92,000 (MPa) (828) (634) 1.30 14		35	SAE J995			
ASTM A 325⁴ 1/2 to 1-in.	psi (MPa)	120,000 (828)	92,000 (634)	1.30	14	35	A 563 C, C3, D, DH, DH3 Heavy Hex
ASTM A193 ⁵ GRADE B8M (AISI 316) for use with HIS-RN	MPa (psi)	110,000 (759)	95,000 (655)	1.16	15	45	F 594 ⁷
ASTM A193 ⁵ GRADE B8T (AISI 321) for use with HIS-RN	MPa (psi)	125,000 (862)	100,000 (690)	1.25 12		35	F 594 ⁷

1 Minimum Grade 5 bolts, cap screws or studs should be used in conjunction with carbon steel HIS inserts.

2 Use only stainless steel bolts, cap screws or studs with HIS-R inserts.

3 Mechanical and Material Requirements for Externally Threaded Fasteners

4 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

5 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

6 Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

7 Nuts for stainless steel studs must be of the same alloy group as the specified stud.

Table 6 — Tensile Properties of Common Reinforcing Bars

Reinforcing Bar Specification	Minimum specified ultimate strength $f_{_{ m uta}}$	Minimum specified yield strength $f_{\rm ya}$	
ASTM A 615 ¹ Gr. 60	psi	90,000	60,000
	(MPa)	(620)	(414)
ASTM A 615 ¹ Gr. 40	psi	60,000	40,000
ASTM A 015' GL 40	(MPa)	(414)	(276)
DIN 488 ² BSt 500	MPa	550	500
Din 400° B31 300	(psi)	(79,750)	(72,500)
	MPa	540	400
CAN/CSA-G30.18 ³ Gr. 400	(psi)	(78,300)	(58,000)

1 Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

2 Reinforcing steel; reinforcing steel bars; dimensions and masses

3 Billet-Steel Bars for Concrete Reinforcement

Table 7 — Steel Design Information for Fractional Threaded Rod^{1,3}

	Design Information		Units			Nomina	I Rod Diam	eter (in.)		
		Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Bo	Rod O.D.		in.	0.375	0.5	0.625	0.75	0.875	1	1.25
			(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Bo	d effective cross-sectional area	A _{se}	in.²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
110	nou enective cross-sectional area		(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
85		N _{sa}	lb	5,619	10,288	16,385	24,251	33,472	43,912	70,258
5.	Nominal strength as governed	sa	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
Class	by steel strength	V_{sa}	lb	2,809	6,173	9,831	14,550	20,083	26,347	42,155
		sa	(kN)	(12.5)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
898-1	Reduction for seismic shear	a _{v,seis}	-				0.70			
ISO 8	Strength reduction factor Φ for tension 2	Φ	-				0.65			
<u></u>	Strength reduction factor Φ for shear^2	Φ	-				0.60			
	Nominal strength as governed by steel strength	N _{sa}	lb	9,687	17,737	28,249	41,812	57,711	75,711	121,135
B7²			(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
93 E		V _{sa}	lb	4,844	10,642	16,950	25,087	34,627	45,426	72,681
A 19			(kN)	(21.5)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM /	Reduction for seismic shear	a _{v,seis}	-				0.70			
AS	Strength reduction factor Φ for tension ²	Φ	-				0.75			
	Strength reduction factor Φ for shear^2	Φ	-				0.65			
S ²		NI	lb	7,750	14,190	22,600	28,432	39,244	51,483	82,372
Stainless ²	Nominal strength as governed	N_{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)
	by steel strength		lb	3,875	8,514	13,560	17,059	23,546	30,890	49,423
, CW		V_{sa}	(kN)	(17.2)	(.37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)
F593,	Reduction for seismic shear	$\alpha_{_{V,seis}}$	-		<u>I</u>	<u> </u>	0.70	1	<u> </u>	1
ASTM F	Strength reduction factor Φ for tension ²	Φ	_				0.75			
AS	Strength reduction factor Φ for shear^2	Φ	-				0.65			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly. Use nuts and washers appropriate for the rod strength. Differing grades of steel may affect corrosion resistance.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

3 e.g. Hilti HAS rods

Table 8 — Concrete Breakout Design Information for Fractional Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Cumhal	Units			Nomina	Rod Diam	eter (in.)			
Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
Effectiveness factor for cracked concrete	k	in-lb				17				
Ellectiveness lactor for cracked concrete	k _{c,cr}	(SI)				(7.1)				
Effectiveness factor for un-cracked concrete	k	in-lb				24				
Effectiveness factor for un-cracked concrete	$k_{c,uncr}$	(SI)				(10)				
Min. anabar anacing		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	6-1/4	
Min. anchor spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)	
NA's selected as a se	_	in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	6-1/4	
Min. edge distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)	
NATIONAL AND	Ŀ	in.	h _{ef} +	1-1/4						
Minimum member thickness	h _{min}	(mm)	(h _{ef} -	+ 30)			$h_{ef} + 2h_{o}$			
Critical edge distance — splitting (for un-cracked concrete)	C _{ac}	-		Se	e Strength	Design pro	visions abo	ove		
Strength reduction factor for tension, concrete failure modes, Condition B ²	Φ	-			0.65					
Strength reduction factor for shear, concrete failure modes, Condition B ²	θ	-	0.70							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 9 — Bond Strength Design Information for Fractional Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

	sign Information	Cumbal	Units			Nomina	I Rod Diam	eter (in.)		
De	sign information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
A ³		_	psi	1,092	1,073	1,044	999	917	852	732
	Characteristic bond strength and minimum anchor embedment in	$\tau_{k,cr}$	(N/mm²)	(7.5)	(7.4)	(7.2)	(6.9)	(6.3)	(5.9)	(5.0)
range	cracked concrete	h	in.	2.43	2.81	3.14	3.44	3.71	4.0	5.0
re		h _{ef,min}	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(127)
Temperature	Characteristic bond strength and	T	psi	2,283	2,236	2,142	2,067	2,002	1,946	1,862
ber	minimum anchor embedment in	$\tau_{k,\text{uncr}}$	(N/mm ²)	(15.7)	(15.4)	(14.8)	(14.3)	(13.8)	(13.4)	(12.8)
lem	un-cracked concrete	h _{ef.min}	in.	2.43	2.81	3.14	3.44	3.71	4.0	5.0
		ef,min	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(127)
ъ	Characteristic bond strength and	τ.	psi	444	431	379	345	316	294	260
	minimum anchor embedment in	τ _{k,cr}	(N/mm ²)	(3.1)	(3.0)	(2.6)	(2.4)	(2.2)	(2.0)	(1.8)
anç	cracked concrete ²	h	in.	1.73	2.20	3.61	3.01	3.50	4.0	5.0
Temperature range		h _{ef,min}	(mm)	(44)	(56)	(66)	(76)	(89)	(102)	(127)
ratu	Characteristic bond strength and	т	psi	788	772	739	714	691	672	643
be	minimum anchor embedment in	τ _{k,uncr}	(N/mm²)	(5.4)	(5.3)	(5.1)	(4.9)	(4.8)	(4.6)	(4.4)
Γeπ	un-cracked concrete ²	h _{ef,min}	in.	1.73	2.20	3.61	3.01	3.50	4.0	5.0
<u> </u>		ef,min	(mm)	(44)	(56)	(66)	(76)	(89)	(102)	(127)
suo	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
conditions	Water-saturated concrete	Φ _{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45
	Water-saturated concrete	k _{ws}	-	1.0	1.0	1.0	1.0	1.0	0.99	0.94
stallat	Water-filled hole	Φ _{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Permissible installation		k _{wf}	-	1.00	1.00	0.96	0.91	0.87	0.84	0.79
missil	Underwater application	Φ _{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Per	onderwater application	k _{uw}	-	0.95	0.94	0.94	0.93	0.92	0.92	0.91

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

- 1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.
- 2 Bond strength values are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).

Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{Nseis} = 0.65$.

Table 8 — Bond Strength Design Information for Fractional Threaded Rod in Holes Drilled with a Core Drill^{1,4}

Design	nformation	Symbol	Units			Nominal	Rod Dian	neter (in.)		
Design	nformation	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
e		_	psi	1,740	1,703	1,553	1,441	1,356	1,282	1,169
Temperature range A ³	Characteristic bond strength and minimum	$\tau_{k,uncr}$	(N/mm²)	(12.0)	(11.7)	(10.7)	(9.9)	(9.4)	(8.8)	(8.1)
mpe rang	anchor embedment in un-cracked concrete	h	in.	2.43	2.81	3.14	3.44	3.71	4.0	5.0
Te –		h _{ef,min}	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(127)
ē		_	psi	601	588	536	497	468	442	404
Temperature range B³	Characteristic bond strength and minimum	$\tau_{k,uncr}$	(N/mm²)	(4.1)	(4.1)	(3.7)	(3.4)	(3.2)	(3.1)	(2.8)
mpe ang	anchor embedment in un-cracked concrete ²		in.	1.57	2.0	2.5	3.0	3.5	4.0	5.0
Te Te		h _{ef,min}	(mm)	(40)	(51)	(64)	(76)	(89)	(102)	(127)
ible ion ons	Dry concrete	Φ _d	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45
Permissible installation conditions	Water esturated concrete	Φ _{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45
Peri inst con	Water-saturated concrete	k _{ws}	-	1.00	1.00	1.00	1.00	1.00	0.95	0.88

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

Table 11 — Steel Design Information for Metric Threaded Rod¹

	sign Information	Symbol	Units			Non	ninal Rod I	Diameter (mm)			
	sign mornation	Symbol	Units	8	10	12	16	20	24	27	30	
B	od O.D.	d	mm	8	10	12	16	20	24	27	30	
	и О.В.	u	(in.)	(0.31)	(0.39)	(0.47)	(0.63)	(0.79)	(0.94)	(1.06)	(1.18)	
B	d effective cross-sectional area	Δ	mm ²	36.6	58	84.3	157	245	353	459	561	
		A_{se}	(in.²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)	(0.547)	(0.711)	(0.870)	
ω		N	kN	18.3	29.0	42.2	78.5	122.5	176.5	229.5	280.5	
s. 5.	Nominal strength as governed	N _{sa}	(lb)	(4,114)	(6,519)	(9,476)	(17,647)	(27,539)	(39,679)	(51,594)	(63,059)	
Class	by steel strength	V _{sa}	kN	9.2	14.5	25.3	47.1	73.5	105.9	137.7	168.3	
		v _{sa}	(lb)	(2,057)	(3,260)	(5,685)	(10,588)	(16,523)	(23,807)	(30,956)	(37,835)	
898-1	Reduction for seismic shear	$\alpha_{_{V,seis}}$	-				0.	70				
SO	Strength reduction factor f for tension ²	Φ	-				0.					
<u>.</u>	Strength reduction factor f for shear ²	Φ	-		~	~	0.	60				
ω		N _{sa}	kN	29.3	46.4	67.4	125.6	196.0	282.4	367.2	448.8	
80	Nominal strength as governed	sa	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)	(63,486)	(82,550)	(100,894)	
Class	by steel strength	V_{sa}	kN	14.6	23.2	40.5	75.4	117.6	169.4	220.3	269.3	
		v _{sa}	(lb)	(3,291)	(5,216)	(9,097)	(16,942)	(26,438)	(38,092)	(49,530)	(60,537)	
898-1	Reduction for seismic shear	$\alpha_{_{V,seis}}$	-				0.	70				
SO	Strength reduction factor Φ for tension ²	Φ	-				0.					
	Strength reduction factor Φ for shear ²	Φ	-				0.	60				
ess ³		N	kN	25.6	40.6	59.0	109.9	171.5	247.1	229.5	280.5	
Stainless ³	Nominal strength as governed	N _{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)	(55,550)	(51,594)	(63,059)	
	by steel strength		kN	12.8	20.3	35.4	65.9	102.9	148.3	137.7	168.3	
Class A4		V _{sa}	(lb)	(2,880)	(4,564)	(7,960)	(14,824)	(23,133)	(33,330)	(30,956)	(37,835)	
-	Reduction for seismic shear	α _{v,seis}	_	0.70								
3506-	Strength reduction factor Φ for tension ²	Φ	-				0.	75				
ISO	$\frac{D}{2}$ Strength reduction factor Φ for shear ² Φ – 0.65											

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly. Use nuts and washers appropriate for the rod strength. Differing grades of steel may affect corrosion resistance.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

3 A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

Table 12 — Concrete Breakout Design Information for Metric Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Cumhal	Linita			Non	ninal Rod	Diameter	mm		
Design Information	Symbol	Units	8	10	12	16	20	24	27	30
		SI				7.	.1			
Effectiveness factor for cracked concrete	k _{c,cr}	(in-lb)				(1	7)			
	1.	SI				1	0			
Effectiveness factor for un-cracked concrete	$k_{c,uncr}$	(in-lb)				(2	4)			
Min. anabar anaging		mm	40	50	60	80	100	120	135	150
Min. anchor spacing	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)
Min. odgo distance		mm	40	50	60	80	100	120	135	150
Min. edge distance	C _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)
Minimum member thickness	h	mm	h _{ef} +	+ 30			b 1	04		
	h _{min}	(in.)	(h _{ef} +	1-1/4)			h _{ef} +	2u _o		
Critical edge distance — splitting (for un-cracked concrete)	C _{ac}	-			See Strer	ngth Desig	n provisic	ons above		
Strength reduction factor for tension, concrete failure modes, Condition B ²	Φ	-		0.65						
Strength reduction factor for shear, concrete failure modes, Condition B ²	Φ	-	0.70							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 13 — Bond Strength Design Information for Metric Threaded Rod in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

Deeie	n Information	Symbol	Units			Nom	inal Rod I	Diameter	(mm)		
Desig	In Information	Symbol	Units	8	10	12	16	20	24	27	30
A³	Characteristic hand strength and	-	N/mm ²	7.5	7.5	7.5	7.2	6.7	6.0	5.7	5.3
]e ⊳	Characteristic bond strength and minimum anchor embedment in	$\tau_{\rm k,cr}$	(psi)	(1,092)	(1,092)	(1,092)	(1,044)	(972)	(877)	(831)	(768)
anç	cracked concrete	h	mm	57	63	69	80	89	98	108	120
Temperature range		h _{ef,min}	(in.)	(2.23)	(2.49)	(2.73)	(3.15)	(3.52)	(3.86)	(4.25)	(4.72)
atu	Characteristic bond strength and	т	N/mm ²	15.6	15.6	15.6	14.8	14.1	13.6	13.3	13.0
Inde	minimum anchor embedment in	τ _{k,uncr}	(psi)	(2,264)	(2,264)	(2,264)	(2,142)	(2,039)	(1,974)	(1,927)	(1,880)
Γeπ	un-cracked concrete	h	mm	57	63	69	80	89	98	108	120
		h _{ef,min}	(in.)	(2.23)	(2.49)	(2.73)	(3.15)	(3.52)	(3.86)	(4.25)	(4.72)
ъ	Characteristic bond strength and	$\tau_{\rm k,cr}$	N/mm ²	3.1	3.1	3.1	2.6	2.3	2.1	2.0	1.9
	minimum anchor embedment in	°k,cr	(psi)	(444)	(444)	(444)	(379)	(336)	(303)	(287)	(268)
Temperature range	cracked concrete ²	h _{ef,min}	mm	40	46	53	67	80	96	108	120
are		et,min	(in.)	(1.57)	(1.80)	(2.10)	(2.62)	(3.15)	(3.78)	(4.25)	(4.72)
ratı	Characteristic bond strength and	$\tau_{\rm k,uncr}$	N/mm ²	5.4	5.4	5.4	5.1	4.9	4.7	4.6	4.5
be	minimum anchor embedment in	-k,uncr	(psi)	(781)	(781)	(781)	(739)	(704)	(681)	(665)	(649)
Ten	un-cracked concrete ²	h _{ef,min}	mm	40	46	53	67	80	96	108	120
		et,min	(in.)	(1.57)	(1.80)	(2.10)	(2.62)	(3.15)	(3.78)	(4.25)	(4.72)
	Dry concrete	Φ_{d}	-	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55
atior	Water-saturated concrete	Φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
stall	Water-saturated concrete	k _{ws}	-	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.95
ssible insta conditions	Mater filled hele	Φ _{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
iissik cor	Water-filled hole	k _{wf}	-	1.00	1.00	1.00	0.96	0.90	0.86	0.83	0.81
Permissible installation conditions	Underwater application	Φ _{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		k _{uw}	-	0.95	0.95	0.95	0.94	0.93	0.92	0.92	0.91

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

Table 14 — Bond Strength Design Information for Metric Threaded Rod in Holes Drilled with a Core drill^{1,4}

Decign In	formation	Sumbol	Units			Nom	inal Rod I	Diameter ((mm)		
Design in	IOMALION	Symbol	Units	8	10	12	16	20	24	27	30
ē		_	N/mm ²	12.0	12.0	12.0	10.7	9.7	9.0	8.6	8.3
Temperature range A ³	Characteristic bond strength and	$\tau_{k,\text{uncr}}$	(psi)	(1,740)	(1,740)	(1,740)	(1,553)	(1,413)	(1,310)	(1,254)	(1,197)
empera range	minimum anchor embedment in un-cracked concrete	h	mm	56	63	69	80	89	98	108	120
– –		h _{ef,min}	(in.)	(2.19)	(2.49)	(2.73)	(3.15)	(3.52)	(3.86)	(4.25)	(4.72)
ē		_	N/mm ²	4.1	4.1	4.1	3.7	3.4	3.1	3.0	2.8
Temperature range B ³	Characteristic bond strength and	T _{k,uncr}	(psi)	(601)	(601)	(601)	(536)	(488)	(452)	(433)	(413)
empera range	minimum anchor embedment in un-cracked concrete ²	I 2	mm	40	41	48	64	80	96	108	120
Te		h _{ef,min}	(in.)	(1.57)	(1.61)	(1.89)	(2.52)	(3.15)	(3.78)	(4.25)	(4.72)
ible ion ns	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45
Permissible installation conditions		Φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
Perr inst cor	Water-saturated concrete	k _{ws}	-	1.00	1.00	1.00	1.00	1.00	0.97	0.93	0.90

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).
 Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).
 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

Table 15 — Steel Design Information for Fractional Hilti HIS-N and HIS-RN Inserts¹

	ain laformation	Cumbal	Units	Nor	minal bolt/cap s	screw Diameter	(in.)
De	sign Information	Symbol	Units	3/8	1/2	5/8	3/4
ш	S Insert O.D.	d	in.	0.65	0.81	1	1.09
	Sinsert O.D.	u	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
Po	d effective cross-sectional area	Δ	in.²	0.0775	0.1419	0.2260	0.3345
	d enective cross-sectional area	A _{se}	(mm²)	(50)	(92)	(146)	(216)
ш	Sinsert effective cross-sectional area	٨	in.²	0.178	0.243	0.404	0.410
	s insert enective cross-sectional area	A _{insert}	(mm²)	(115)	(157)	(260)	(265)
	Newsignal advantable as a success of	N	lb	9,296	17,020	27,108	40,122
	Nominal strength as governed by steel strength — ASTM A193 B7	N _{sa}	(kN)	(41.3)	(75.7)	(120.6)	(178.5)
B7	bolt/cap screw	V	lb	5,577	10,212	16,265	24,073
93 E		V _{sa}	(kN)	(24,8)	(45.4)	(72.3)	(107.1)
A 1	Nominal strength as governed	N	lb	12,648	16,195	26,926	27,362
ASTM	by steel strength — HIS-N insert	N _{sa}	(kN)	(56.3)	(72.0)	(119.8)	(121.7)
AS ⁻	Reduction for seismic shear	α _{v,seis}	-		0.	70	
	Strength reduction factor Φ for tension ²	Φ	-		0.	65	
	Strength reduction factor Φ for shear ²	Φ	-		0.	60	
SS		N	lb	7,750	14,190	22,599	28,432
	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)
B8M	strength — ASTM F A193 Grade B8M SS bolt/cap screw	V	lb	4,650	8,514	13,560	17,059
Grade I	bolycap selew	V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)
Ğ	Nominal strength as governed by steel	N	lb	18,068	24,645	40,974	41,638
193	strength — HIS-RN insert	N _{sa}	(kN)	(80.4)	(109.6)	(182.3)	(185.2)
FА	Reduction for seismic shear	α _{v,seis}	-		0.	70	
ASTM	Strength reduction factor Φ for tension ²	Φ	-		0.	65	
AS	Strength reduction factor Φ for shear^2	Φ	-		0.	60	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly. Use nuts and washers appropriate for the rod strength. Differing grades of steel may affect corrosion resistance.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

Design Information	Sympol	Units	No	ominal bolt/cap s	screw diameter (in.)					
Design Information	Symbol	Units	3/8	1/2	5/8	3/4					
Effective embedment denth	h	in.	4-3/8	5	6-3/4	8-1/8					
Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)					
Effectiveness factor for cracked concrete	le.	in-lb		1	7						
Effectiveness factor for cracked concrete	κ _{c,cr}	(SI)	(7.1)								
Effectiveness factor for un-cracked concrete	k	in-lb		24							
Effectiveness factor for un-cracked concrete	k _{c,c}	(SI)		(1	0)						
Minimum anabar anaging		in.	3-1/4	4	5	5-1/2					
Minimum anchor spacing	S _{min}	(mm)	(83)	(102)	(127)	(140)					
Minimum odgo diotonoo	0	in.	3-1/4	4	5	5-1/2					
Minimum edge distance	C _{min}	(mm)	(83)	(102)	(127)	(140)					
Minimum member thickness	h	in.	5.9	6.7	9.1	10.6					
	h _{min}	(mm)	(150)	(170)	(230)	(270)					
Critical edge distance — splitting	C _{ac}	_	Se	e Strenath Desia	n provisions ab	ove					
(for un-cracked concrete)	Cac			e ea en gan Booig							
Strength reduction factor for tension, concrete failure modes, Condition B ²	Φ	-	0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	Φ	-	0.70								

Table 16 — Concrete Breakout Design Information for Fractional Hilti HIS-N and HIS-RN Inserts¹

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 17 — Bond Strength Design Information for Fractional Hilti HIS-N and HIS-RN Inserts in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

Dooigr	Information	Symbol	Units	No	minal bolt/cap s	crew Diameter	(in.)
Desigi	Thiomation	Symbol	Units	3/8	1/2	5/8	3/4
Effecti	ve embedment depth	h _{ef}	in.	4-3/8	5	6-3/4	8-1/8
LIIECU		l ef	(mm)	(110)	(125)	(170)	(205)
HIS in	sert O.D.	d	in.	0.65	0.81	1	1.09
		5	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
a re	Characteristic bond strength	т	psi	1040	957	845	806
eratur e A ³	in cracked concrete	$\tau_{\rm k,cr}$	(N/mm²)	(7.2)	(6.6)	(5.8)	(5.6)
Temperature range A ³	Characteristic bond strength	_	psi	2124	2030	1946	1908
це Те	in un-cracked concrete	$\tau_{k,\text{uncr}}$	(N/mm²)	(14.6)	(14.0)	(13.4)	(13.2)
e	Characteristic bond strength	_	psi	374	330	292	278
Temperature range B³	in cracked concrete ²	$\tau_{\rm k,cr}$	(N/mm²)	(2.6)	(2.3)	(2.0)	(1.9)
empera range	Characteristic bond strength	-	psi	733	701	672	659
е -	in un-cracked concrete ²	$\tau_{k,\text{uncr}}$	(N/mm²)	(5.1)	(4.8)	(4.6)	(4.5)
_	Dry concrete	Φ _d	-	0.65	0.65	0.55	0.55
atior	Water-saturated concrete	$\Phi_{_{WS}}$	-	0.45	0.45	0.45	0.45
stall	Water-Saturated Concrete	k _{ws}	-	1.00	1.00	0.99	0.97
ssible insta conditions	Water-filled hole	Φ _{wf}	-	0.45	0.45	0.45	0.45
nissik cor		k _{wf}	-	0.95	0.89	0.84	0.82
Permissible installation conditions	Underwater application	Φ _{uw}	-	0.45	0.45	0.45	0.45
-		k	-	0.93	0.93	0.92	0.92

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).

Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{Nseis} = 0.65$.

Table 18 — Bond Strength Design Information for Fractional Hilti HIS-N and HIS-RN Inserts in Holes Drilled with a Core Drill^{1,4}

Decign	nformation	Symbol	Units	N	ominal bolt/cap s	crew diameter (i	n.)
Designi	normation	Symbol	Units	3/8	1/2	5/8	3/4
Effective	embedment depth	h _{ef}	in.	4-3/8	5	6-3/4	8-1/8
LIIECtive	embedment depth	l ef	(mm)	(110)	(125)	(170)	(205)
HIS inse	rt O D	d	in.	0.65	0.81	1	1.09
		ŭ	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
rature e A³	Characteristic bond strength in		psi	1534	1403	1282	1235
Temperature range A ³	un-cracked concrete	$\tau_{k,uncr}$	(N/mm²)	(10.6)	(9.7)	(8.8)	(8.5)
Temperature range B ³	Characteristic bond strength in	-	psi	530	484	442	426
Tempe rang	un-cracked concrete ²	$\tau_{k,uncr}$	(N/mm²)	(3.7)	(3.3)	(3.1)	(2.9)
ole on sr	Dry concrete	Φ_{d}	-	0.55	0.55	0.45	0.45
Permissible installation conditions	Water-saturated concrete	Φ _{ws}	-	0.45	0.45	0.45	0.45
S in P	Water saturated concrete	k _{ws}	_	1.00	1.00	0.95	0.92

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

Table 19 — Steel Design Information for Metric Hilti HIS-N and HIS-RN Inserts¹

Do	aign Information	Symbol	Units		Nominal bolt	/cap screw Di	ameter (mm)	
De	sign Information	Symbol	Units	8	10	12	16	20
	S insert O.D.	d	mm	12.5	16.5	20.5	25.4	27.6
	S Insert O.D.	d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
Pa	It effective cross-sectional area	٨	mm²	36.6	58	84.3	157	245
БО	it enective cross-sectional area	A _{se}	(in.²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)
ப	S insert effective cross-sectional area	٨	mm ²	51.5	108	169.1	256.1	237.6
	Sinsen enective cross-sectional area	A _{insert}	(in.²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)
		N	kN	29.3	46.4	67.4	125.6	196.0
	Nominal strength as governed by steel strength — ISO 898-1	N_{sa}	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)
B7	Class 8.8 bolt/cap screw	V	kN	17.6	27.8	40.5	75.4	117.6
193		V_{sa}	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)
◄	Nominal strength as governed by steel	N	kN	25.2	52.9	77.8	117.8	109.3
ASTM	strength — HIS-N insert	N_{sa}	(lb)	(5,669)	(11,894)	(17,488)	(26,483)	(24,573)
AS	Reduction for seismic shear	$\alpha_{_{V,seis}}$	-		•	0.70	•	
	Strength reduction factor Φ for tension ²	Φ	-			0.65		
	Strength reduction factor Φ for shear ²	Φ	-			0.60		
SS		N	kN	25.6	40.6	59.0	109.9	171.5
B8M	Nominal strength as governed by steel strength — ISO 3506-1 Class A4-70	N_{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
B	Stainless bolt/cap screw	V	kN	15.4	24.4	35.4	65.9	102.9
Grade		V_{sa}	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
93 G	Nominal strength as governed by steel	N	kN	36.0	75.6	118.4	179.3	166.3
-	strength — HIS-RN insert	N_{sa}	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
ΕA	Reduction for seismic shear	$\alpha_{_{V,seis}}$	-			0.70		
ASTM	Strength reduction factor Φ for tension ²	Φ	-			0.65		
AS	Strength reduction factor Φ for shear ²	Φ	-			0.60		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly. Use nuts and washers appropriate for the rod strength. Differing grades of steel may affect corrosion resistance.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4. Values correspond to a ductile steel element.

Decian Information	Cumbal	Units		Nominal bo	lt/cap screw di	ameter (mm)	
Design Information	Symbol	Units	8	10	12	16	20
Effective embedment denth	h	mm	90	110	125	170	205
Effective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Effectiveness factor for	k	SI			7.1		
cracked concrete	k _{c,cr}	(in-lb)			(17)		
Effectiveness factor for	k	SI			10		
un-cracked concrete	k _{c,c}	(in-lb)			(24)		
Minimum anchor spacing	c	mm	40	50	60	80	100
Winning anchor spacing	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)
Minimum edge distance	•	mm	40	50	60	80	100
Minimum edge distance	C _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)
Minimum member thickness	h	mm	120	150	170	230	270
	h _{min}	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)
Critical edge distance — splitting (for un-cracked concrete)	C _{ac}	-		See Streng	th Design provi	sions above	
Strength reduction factor for tension, concrete failure modes, Condition B ²	Φ	-			0.65		
Strength reduction factor for shear, concrete failure modes, Condition B ²	Φ	-			0.70		

Table 20 — Concrete Breakout Design Information for Metric Hilti HIS-N and HIS-RN Inserts¹

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 21 — Bond Strength Design Information for Metric Hilti HIS-N and HIS-RN Inserts in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

Deeig	n Information	Symbol	Units		Nominal bol	t/cap screw Di	ameter (mm)	
Desigi	TIMOTTALION	Symbol	Units	8	10	12	16	20
Effooti	ve embedment depth	h	mm	90	110	125	170	205
LIIECU		h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
HIS in	sert O.D.	d	mm	12.5	16.5	20.5	25.4	27.6
11311	Sert O.D.	u	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
are	Characteristic bond strength in	τ	N/mm ²	7.4	7.2	6.6	5.8	5.6
eratui e A ³	cracked concrete	$\tau_{\rm k,cr}$	(psi)	(1,080)	(1,040)	(957)	(845)	(806)
Temperature range A ³	Characteristic bond strength in	_	N/mm ²	15.5	14.6	14.0	13.4	13.2
Te Te	un-cracked concrete	$\tau_{\rm k,uncr}$	(psi)	(2,245)	(2,124)	(2,030)	(1,946)	(1,908)
e le	Characteristic bond strength in	_	N/mm ²	3.0	2.6	2.3	2.0	1.9
e B ³	cracked concrete ²	$\tau_{\rm k,cr}$	(psi)	(433)	(374)	(330)	(292)	(278)
Temperature range B ³	Characteristic bond strength in	~	N/mm ²	5.3	5.1	4.8	4.6	4.5
_ Te	un-cracked concrete ²	$\tau_{k,\text{uncr}}$	(psi)	(775)	(733)	(701)	(672)	(659)
ç	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.55	0.55
latio	Water-saturated concrete	Φ_{ws}	-	0.55	0.45	0.45	0.45	0.45
ıstal ons	Water-saturated concrete	k _{ws}	-	1.00	1.00	1.00	0.99	0.97
ssible insta conditions	Water-filled hole	$\Phi_{\rm wf}$	-	0.45	0.45	0.45	0.45	0.45
issib con		k _{wf}	-	1.00	0.95	0.89	0.84	0.82
Permissible installation conditions	Lindonwator application	Φ_{uw}	-	0.45	0.45	0.45	0.45	0.45
۵.	Underwater application	k _{uw}	-	0.94	0.93	0.93	0.92	0.92

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).

Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

Table 22 — Bond Strength Design Information for Metric Hilti HIS-N and HIS-RN Inserts in Holes Drilled with a Core Drill^{1,4}

Design	nformation	Symbol	Units		Nominal bol	t/cap screw dia	ameter (mm)	
Designi	mormation	Symbol	Units	8	10	12	16	20
Effective	embedment depth	h _{ef}	mm	90	110	125	170	205
Lilootivo		ef	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
HIS inse	rt O D	d	mm	12.5	16.5	20.5	25.4	27.6
		<u> </u>	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
Temperature range A ³	Characteristic bond strength	τ	N/mm²	11.8	10.6	9.7	8.8	8.5
Tempe ranç	in un-cracked concrete	$ au_{k,uncr}$	(psi)	(1,712)	(1,534)	(1,403)	(1,282)	(1,235)
Temperature range B ³	Characteristic bond strength	τ	N/mm ²	4.1	3.7	3.3	3.1	2.9
Tempe rang	in un-cracked concrete ²	$ au_{k,uncr}$	(psi)	(591)	(530)	(484)	(442)	(426)
ble on ns	Dry concrete	Φ_{d}	-	0.65	0.55	0.45	0.45	0.45
Permissible installation conditions	Water-saturated concrete	Φ _{ws}	-	0.55	0.45	0.45	0.45	0.45
Pel ins co	Water-saturated concrete	k _{ws}	-	1.0	1.0	1.0	0.95	0.92

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

Table 23 — Steel Design Information for Fractional Reinforcing Bars¹

	sign Information	Symbol	Units				Bar	Size			
	Sign mornation	Symbol	Onits	#3	#4	#5	#6	#7	#8	#9	#10
No	minal bar diameter	d	in.	3/8	1/2	5/8	3/4	7/8	1	1-1/8	1-1/4
NO		u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Pa	r effective cross-sectional area	^	in.²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27
Da	reflective cross-sectional area	A_{se}	(mm)²	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)
		N	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200
r. 40	Nominal strength as governed	N _{sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
5 Gr.	by steel strength	V	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720
61		V_{sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
ΜΑ	Reduction for seismic shear	α _{v,seis}	-				0.	70			
ASTM	Strength reduction factor f for tension ²	Φ	-				0.	75			
	Strength reduction factor f for shear ²	Φ	-				0.	65			
		N	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300
. 60	Nominal strength as governed	N _{sa}	(kN)	(44.0)	(80.1)	(124.1)	(176.2)	(240.2)	(316.3)	(400.4)	(508.5)
5 Gr.	by steel strength	V	lb	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580
615		V_{sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)
ΜΑ	Reduction for seismic shear	α _{v,seis}	-	0.70							
ASTM	Strength reduction factor Φ for tension ²	Φ	-				0.	65			
	Strength reduction factor Φ for shear ²	Φ	-				0.	60			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rebar material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

Table 24 — Concrete Breakout Design Information for Fractional Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design Information	Cumhal	Units				Bar	Size			
Design Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Effectiveness factor for cracked concrete	L.	in-lb				1	7			
Effectiveness factor for cracked concrete	k _{c,cr}	(SI)				(7.	.1)			
Effectiveness factor for up evolved concrete	Le.	in-lb				2	4			
Effectiveness factor for un-cracked concrete	k _{c,uncr}	(SI)				(1	0)			
Minimum hor encoing		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum bar spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum odgo distance		in.	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	5-5/8	6-1/4
Minimum edge distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum member thickness	h	in.	h _{ef} +	1-1/4			, h	04		
Minimum member thickness	h _{min}	(mm)	(h _{ef} +	+ 30)			h _{ef} +	- 20 ₀		
Critical edge distance — splitting	C	_			See Strer	ath Desig	n provisio	ons above		
(for un-cracked concrete)	C_{ac}					Igtil Desig				
Strength reduction factor for tension,	Φ	_				0.	65			
concrete failure modes, Condition B ²	Ŷ					0.				
Strength reduction factor for shear,	θ	_				0.	70			
concrete failure modes, Condition B ²	*					0.				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 25 — Bond Strength Design Information for Fractional Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

Docio	In Information	Symbol	Units				Bar	Size			
Desig	mmonnation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
A ³	Characteristic hand strength and	-	psi	1,092	1,073	1,044	999	917	852	799	732
	Characteristic bond strength and minimum anchor embedment in	$\tau_{k,cr}$	(N/mm ²)	(7.5)	(7.4)	(7.2)	(6.9)	(6.3)	(5.9)	(5.5)	(5.0)
ang	cracked concrete	h	in.	2.43	2.81	3.14	3.44	3.71	4.00	4.50	5.00
Temperature range		h _{ef,min}	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(114)	(127)
atu	Characteristic bond strength and	т	psi	2,264	2,236	2,142	2,067	2,002	1,946	1,899	1,862
bet	minimum anchor embedment in	τ _{k,uncr}	(N/mm ²)	(15.6)	(15.4)	(14.8)	(14.3)	(13.8)	(13.4)	(13.1)	(12.8)
Γeπ	un-cracked concrete	h	in.	2.43	2.81	3.14	3.44	3.71	4.00	4.50	5.00
		h _{ef,min}	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(114)	(127)
ñ	Characteristic bond strength and	- т	psi	444	431	379	345	316	294	276	260
	minimum anchor embedment in	τ _{k,cr}	(N/mm ²)	(3.1)	(3.0)	(2.6)	(2.4)	(2.2)	(2.0)	(1.9)	(1.8)
Temperature range	cracked concrete ²	h	in.	1.73	2.20	2.61	3.00	3.50	4.00	4.50	5.00
Le L		h _{ef,min}	(mm)	(44)	(56)	(66)	(76)	(89)	(102)	(114)	(127)
atu	Characteristic bond strength and	т	psi	781	772	739	714	691	672	656	643
Ibel	minimum anchor embedment in	τ _{k,uncr}	(N/mm ²)	(5.4)	(5.3)	(5.1)	(4.9)	(4.8)	(4.6)	(4.5)	(4.4)
Γeπ	un-cracked concrete ²	h	in.	1.73	2.20	2.61	3.00	3.50	4.00	4.50	5.00
		h _{ef,min}	(mm)	(44)	(56)	(66)	(76)	(89)	(102)	(114)	(127)
-	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55	0.55
atior	Water-saturated concrete	Φ _{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
stall	Water-Saturated Concrete	k _{ws}	-	1.00	1.00	1.00	1.00	1.00	0.99	0.97	0.94
ssible insta conditions	Water-filled hole	Φ _{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
lissik cor		k _{wf}	-	1.00	1.00	0.96	0.91	0.87	0.84	0.82	0.79
Permissible installation conditions	Underwater application	Φ _{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		k _{uw}	-	0.95	0.94	0.94	0.93	0.92	0.92	0.92	0.91

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

Table 26 — Bond Strength Design Information for Fractional Reinforcing Bars in Holes Drilled with a Core Drill^{1,4}

Docian	nformation	Symbol	Units				Bar	Size			
Design	mormation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
are 3	.	-	psi	1,740	1,703	1,553	1,441	1,356	1,282	1,226	1,169
Temperature range A ³	Characteristic bond strength and minimum anchor embedment in	$\tau_{k,uncr}$	(N/mm²)	(12.0)	(11.7)	(10.7)	(9.9)	(9.4)	(8.8)	(8.4)	(8.1)
ampera range	un-cracked concrete	h	in.	2.43	2.81	3.14	3.44	3.71	4.00	4.50	5.00
Te		h _{ef,min}	(mm)	(62)	(71)	(80)	(87)	(94)	(102)	(114)	(127)
are °	.	_	psi	601	588	536	497	468	442	423	404
eratu e B³	Characteristic bond strength and minimum anchor embedment in	$\tau_{k,uncr}$	(N/mm²)	(4.1)	(4.1)	(3.7)	(3.4)	(3.2)	(3.1)	(2.9)	(2.8)
Temperature range B³		h	in.	1.57	2.00	2.50	3.00	3.50	4.00	4.50	5.00
Te		h _{ef,min}	(mm)	(40)	(51)	(64)	(76)	(89)	(102)	(114)	(127)
ible ion ons	Dry concrete	Φ _d	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
Permissible installation conditions	Water-saturated concrete	Φ _{ws}	-	0.65	0.55	0.55	0.55	0.45	0.45	0.45	0.45
Per insi cor		k _{ws}	-	1.00	1.00	1.00	1.00	1.00	0.95	0.91	0.88

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).

Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

	aign Information	Symbol	Units					Bar Size				
De	sign Information	Symbol	Units	8	10	12	14	16	20	25	28	32
No	minal bar diameter	d	mm	8.0	10.0	12.0	14.0	16.0	20.0	25.0	28.0	32.0
		u	(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.260)
Pa	r effective cross-sectional area	^	mm ²	50.3	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2
Ба	enective cross-sectional area	A _{se}	(in.²)	(0.078)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)
		N	kN	27.6	43.2	62.2	84.7	110.6	172.8	270.0	338.7	442.3
8	Nominal strength as	N _{sa}	(lb)	(6,215)	(9,711)	(13,984)	(19,034)	(24,860)	(38,844)	(60,694)	(76,135)	(99,441)
550/500	governedby steel strength	V	kN	16.6	25.9	37.3	50.8	66.4	103.7	162.0	203.2	265.4
		V _{sa}	(lb)	(3,729)	(5,827)	(8,390)	(11,420)	(14,916)	(23,307)	(36,416)	(45,681)	(59,665)
BSt	Reduction for seismic shear	α _{v,seis}	-					0.70				
488	Strength reduction	Φ	-					0.65				
DIN	z factor Φ for tension ²							0.00				
	Strength reduction factor Φ for shear ²	Φ	-					0.60				

Table 27 — Steel Design Information for EU Metric Reinforcing Bars¹

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rebar material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

Table 28 — Concrete Breakout Design Information for EU Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

							Bar Size				
Design Information	Symbol	Units	8	10	12	14	16	20	25	28	32
Effectiveness factor	k	SI					7.1				
for cracked concrete	k _{c,cr}	(in-lb)					(17)				
Effectiveness factor	4	SI					10				
for un-cracked concrete	k _{c,uncr}	(in-lb)					(24)				
Minimum bar spacing		mm	40	50	60	70	80	100	125	140	160
	S _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum edge distance		mm	40	50	60	70	80	100	125	140	160
	C _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum member thickness	h	mm	h _{ef} -	+ 30				h _{ef} + 2d _o			
	h _{min}	(in.)	(h _{ef} +	1-1/4)				n _{ef} ' 20 _o			
Critical edge distance — splitting (for un-cracked concrete)	C _{ac}	-			See	Strength I	Design pro	ovisions al	oove		
Strength reduction factor for tension, concrete failure modes, Condition B ²	Φ	-	- 0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	Φ	-	- 0.70								

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

Table 29 — Bond Strength Design Information for EU Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

Deale	n Information	Symbol	Units					Bar Size				
Desig	n Information	Symbol	Units	8	10	12	14	16	20	25	28	32
A³	Characteristic bond	~	N/mm ²	7.5	7.5	7.5	7.4	7.2	6.7	5.9	5.6	5.0
eΑ	strength and minimum	$\tau_{\rm k,cr}$	(psi)	(1,092)	(1,092)	(1,092)	(1,068)	(1,044)	(972)	(862)	(806)	(732)
ang	anchor embedment in	h	mm	57	63	69	75	80	89	100	112	128
rer	cracked concrete	h _{ef,min}	(in.)	(2.23)	(2.49)	(2.73)	(2.95)	(3.15)	(3.52)	(3.94)	(4.41)	(5.04)
atu	Characteristic bond	Ŧ	N/mm ²	15.6	15.6	15.6	15.2	14.8	14.1	13.5	13.2	12.8
ber	strength and minimum	$\tau_{k,uncr}$	(psi)	(2,264)	(2,264)	(2,264)	(2,198)	(2,142)	(2,039)	(1,955)	(1,908)	(1,862)
Temperature range	anchor embedment in	h	mm	57	63	69	75	80	89	100	112	128
	un-cracked concrete	h _{ef,min}	(in.)	(2.23)	(2.49)	(2.73)	(2.95)	(3.15)	(3.52)	(3.94)	(4.41)	(5.04)
B³	Characteristic bond	т	N/mm ²	3.1	3.1	3.1	2.8	2.6	2.3	2.1	1.9	1.8
	strength and minimum	$\tau_{k,cr}$	(psi)	(444)	(444)	(444)	(410)	(379)	(336)	(298)	(278)	(260)
ang	anchor embedment in	h	mm	40	46	53	60	67	80	100	112	128
Temperature range	cracked concrete ²	h _{ef,min}	(in.)	(1.57)	(1.80)	(2.10)	(2.37)	(2.62)	(3.15)	(3.94)	(4.41)	(5.04)
ratu	Characteristic bond	т	N/mm ²	5.4	5.4	5.4	5.2	5.1	4.9	4.7	4.5	4.4
be	strength and minimum	τ _{k,uncr}	(psi)	(781)	(781)	(781)	(759)	(739)	(704)	(675)	(659)	(643)
Γeπ	anchor embedment in	h	mm	40	46	53	60	67	80	100	112	128
	un-cracked concrete ²	h _{ef,min}	(in.)	(1.57)	(1.80)	(2.10)	(2.37)	(2.62)	(3.15)	(3.94)	(4.41)	(5.04)
_	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55	0.55
atior	Water-saturated	Φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
stall	concrete	k _{ws}	-	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.94	0.94
ssible insta conditions	Water-filled hole	Φ _{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
issik cor	vvaler-Illieu noie	k _{wf}	-	1.00	1.00	1.00	0.96	0.93	0.87	0.82	0.79	0.79
Permissible installation conditions	Underwater	Φ _{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	application	k _{uw}	-	0.95	0.95	0.94	0.94	0.93	0.92	0.92	0.91	0.91

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

*

3.2.4 HIT-RE 500-SD Epoxy Adhesive Anchoring System

Table 30 — Bond Strength Design Information for EU Metric Reinforcing Bars in Holes Drilled with a Core Drill^{1,4}

Design	nformation	Symbol	Units					Bar Size				
Design	mormation	Symbol	Units	8	10	12	14	16	20	25	28	32
ure ³	Characteristic bond	T	N/mm ²	12.0	12.0	12.0	11.3	10.7	9.7	8.9	8.5	8.1
Temperature range A ³	strength and minimum	$\tau_{k,uncr}$	(psi)	(1,740)	(1,740)	(1,740)	(1,637)	(1,553)	(1,413)	(1,291)	(1,235)	(1,169)
mpera range	anchor embedment in	h	mm	56	63	69	75	80	89	100	112	128
Te T	un-cracked concrete	h _{ef,min}	(in.)	(2.19)	(2.49)	(2.73)	(2.95)	(3.15)	(3.52)	(3.94)	(4.41)	(5.04)
ure ³	Characteristic bond	T	N/mm ²	4.1	4.1	4.1	3.9	3.7	3.4	3.1	2.9	2.8
eratul Je B ³	strength and minimum	$\tau_{k,uncr}$	(psi)	(601)	(601)	(601)	(565)	(536)	(488)	(446)	(426)	(404)
Temperature range B³	anchor embedment in	h	mm	40	41	48	56	64	80	100	112	128
Te	un-cracked concrete ²	h _{ef,min}	(in.)	(1.57)	(1.61)	(1.89)	(2.20)	(2.52)	(3.15)	(3.94)	(4.41)	(5.04)
tion ons	Dry concrete	Φ _d	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
Permissible installation conditions	Water-saturated	Φ _{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
Per ins: cot	concrete	k _{ws}	-	1.0	1.0	1.0	1.0	1.0	1.0	0.92	0.88	0.88

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).

Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

Table 31 — Steel Design Information for Canadian Metric Reinforcing Bars¹

	sign Information	Symbol	Units			Bar Size		
	sign mornation	Symbol	Units	10 M	15 M	20 M	25 M	30 M
No	minal bar diameter	d	mm	11.3	16.0	19.5	25.2	29.9
		u	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Ba	r effective cross-sectional area	۸	mm ²	100.3	201.1	298.6	498.8	702.2
Ба	enective cross-sectional area	A _{se}	(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)
		N	kN	54.2	108.6	161.3	269.3	379.2
	Nominal strength as governed by	N _{sa}	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)
G30	steel strength	V	kN	32.5	65.1	96.8	161.6	227.5
		V _{sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)
CSA	Reduction for seismic shear	α _{v,seis}	-			0.70		
	Strength reduction factor Φ for tension ²	Φ	-			0.65		
	Strength reduction factor Φ for shear ²	Φ	-			0.60		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rebar material types based on published strengths and calculated in accordance with ACI 318-08 Eq. (D-3) and Eq. (D-20). Other material specifications are admissible provided the design is adjusted accordingly.

2 For use with the load combinations of ACI 318-08 Section 9.2. See ACI 318-08 Section D.4.4.

÷

HIT-RE 500-SD Epoxy Adhesive Anchoring System 3.2.4

Table 32 — Concrete Breakout Design Information for Canadian Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit¹

Design lafe mestion	O: make al	Units	Bar Size					
Design Information	Symbol	Units	10 M	15 M	20 M	25 M	30 M	
Effectiveness factor	le .	SI			7.1			
for cracked concrete	k _{c,cr}	(in-lb)			(17)			
Effectiveness factor	le .	SI			10			
for un-cracked concrete	k _{c,uncr}	(in-lb)		(24)				
Minimum has anaging		mm	57	80	98	126	150	
Minimum bar spacing	S _{min}	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)	
		mm	57	80	98	126	150	
Minimum edge distance	C _{min}	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)	
Minimum member thickness	h	mm	h _{ef} + 30				•	
	h _{min}	(in.)	(h _{ef} + 1-1/4)		n _e	_f + 2d _o		
Critical edge distance — splitting (for un-cracked concrete)	C _{ac}	_	See Strength Design provisions above			e		
Strength reduction factor for tension,								
concrete failure modes, Condition B ²	Φ	_	0.65					
Strength reduction factor for shear, concrete failure modes, Condition B ²	Φ	-	0.70					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 For additional setting information, see installation instructions.

2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B without supplementary reinforcement.

*

3.2.4 HIT-RE 500-SD Epoxy Adhesive Anchoring System

Table 33 — Bond Strength Design Information for Canadian Metric Reinforcing Bars in Holes Drilled with a Hammer Drill and Carbide Bit^{1,4}

								Ŧ
Deele	un Information	Cumphel	Units			Bar Size		
Desig	n Information	Symbol	Units	10 M	15 M	20 M	25 M	30 M
A³		-	N/mm ²	7.5	7.2	6.8	5.9	5.4
еA	Characteristic bond strength and minimum	$\tau_{\rm k,cr}$	(psi)	(1,092)	(1,044)	(991)	(852)	(777)
ang	anchor embedment in cracked concrete	h	mm	67	80	88	101	120
Temperature range		$h_{_{ef,min}}$	(in.)	(2.65)	(3.15)	(3.48)	(3.97)	(4.71)
atu		τ	N/mm ²	15.6	14.8	14.2	13.5	13.0
per	Characteristic bond strength and minimum	$\tau_{k,uncr}$	(psi)	(2,264)	(2,142)	(2,058)	(1,955)	(1,880)
-en-	anchor embedment in un-cracked concrete	h	mm	67	80	88	101	120
F		$h_{_{ef,min}}$	(in.)	(2.65)	(3.15)	(3.48)	(3.97)	(4.71)
B	Characteristic bond strength and minimum anchor embedment in cracked concrete ² Characteristic bond strength and minimum anchor embedment in un-cracked concrete ²	τ	N/mm ²	3.1	2.6	2.4	2.0	1.9
		$\tau_{\rm k,cr}$	(psi)	(444)	(379)	(342)	(294)	(271)
anç		h	mm	51	67	78	101	120
ъ		$h_{_{ef,min}}$	(in.)	(2.00)	(2.62)	(3.07)	(3.97)	(4.71)
atu		т	N/mm ²	5.4	5.1	4.9	4.7	4.5
Iper	Characteristic bond strength and minimum	$\tau_{k,\text{uncr}}$	(psi)	(781)	(739)	(710)	(675)	(649)
Γeπ	anchor embedment in un-cracked concrete ²	h	mm	51	67	78	101	120
		$h_{_{ef,min}}$	(in.)	(2.00)	(2.62)	(3.07)	(3.97)	(4.71)
~	Dry concrete	Φ_{d}	-	0.65	0.65	0.65	0.55	0.55
atior	Water-saturated concrete	$\Phi_{_{ws}}$	-	0.55	0.45	0.45	0.45	0.45
installation tions	water-saturated concrete	k _{ws}	-	1.0	1.0	1.0	1.0	0.96
ssible insta conditions	Motor filled belg	$\Phi_{\rm wf}$	-	0.45	0.45	0.45	0.45	0.45
Permissible condit	Water-filled hole	k _{wf}	-	1.00	0.96	0.91	0.85	0.81
Perm		$\Phi_{_{uw}}$	-	0.45	0.45	0.45	0.45	0.45
ш.	Underwater application	k _{uw}	-	0.95	0.94	0.93	0.92	0.91

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C).
 Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C).
 Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For structures assigned to SDC C, D, E or F, bond strength values shall be multiplied by $\alpha_{N,seis} = 0.65$.

÷

HIT-RE 500-SD Epoxy Adhesive Anchoring System 3.2.4

Table 34 — Bond Strength Design Information for Canadian Metric Reinforcing Bars in Holes Drilled with a Core Drill^{1,4}

Design	Design Information		Units	Bar Size				
Design I			Units	10 M	15 M	20 M	25 M	30 M
are 。		~	N/mm ²	12.0	10.7	9.9	8.9	8.3
eratul Je A ³	Characteristic bond strength and minimum	$\tau_{k,uncr}$	(psi)	(1,740)	(1,553)	(1,431)	(1,291)	(1,197)
mpe	Characteristic bond strength and minimum anchor embedment in un-cracked concrete	h	mm	67	80	88	101	120
Te T		h _{ef,min}	(in.)	(2.65)	(3.15)	(3.48)	(3.97)	(4.71)
ure ³	a rue	~	N/mm ²	4.1	3.7	3.4	3.1	2.8
erature je B ³	Characteristic bond strength and minimum	$ au_{k,uncr}$	(psi)	(601)	(536)	(494)	(446)	(413)
Tempera range	anchor embedment in un-cracked concrete ²	h _{ef,min}	mm	45	64	78	101	120
Te T			(in.)	(1.78)	(2.52)	(3.07)	(3.97)	(4.71)
ible tion ons	Dry concrete	Φ _d	-	0.65	0.55	0.55	0.45	0.45
Permissible installation conditions	Water-saturated concrete	Φ _{ws}	-	0.55	0.45	0.45	0.45	0.45
Con con	water-saturated concrete	k _{ws}	-	1.00	1.00	1.00	0.96	0.90

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

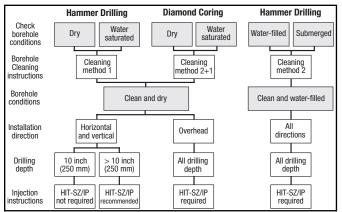
1 Bond strength values correspond to concrete compressive strength range 2,500 psi $\leq f'c \leq 4,500$ psi. For 4,500 psi $\leq f'c \leq 6,500$ psi, tabulated characteristic bond strength may be increased by 6%. For 6,500 psi $\leq f'c \leq 8,000$ psi, tabulated characteristic bond strength may be increased by 10%.

2 Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond strengths may be increased 40%.

3 Temperature range A: Max. short term temperature = 110°F (43°C), max. long term temperature = 80°F (26°C). Temperature range B: Max. short term temperature = 162°F (72°C), max. long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 Bond strength values applicable to SDC A and B only.

3.2.4.5 Installation Instructions


Adhesive anchoring system for fastenings in normal weight concrete

Prior to use of product follow instructions for use and recommended safety precautions.

- Check expiration date: See expiration date imprint on foilpack manifold. (Month/Year). Do not use expired product.
- Foil pack temperature: Must be between 41°F and 104°F (5°C - 40°C) when in use.
- Base material temperature at time of installation: Must be between 41°F and 110°F (5°C 43°C).
- Instructions for transport and storage: Keep in a cool, dry and dark place between 41°F and 77°F (5°C - 25°C).
- Material Safety Data Sheet: Review the MSDS before use.

Installation Instructions: Follow the pictograms 1-14 for the sequence of operations and refer to tables 1-3 for setting details. For any application not covered by this document (e.g. "h_{ef}" beyond values specified in setting details), contact Hilti.

Installation flow Chart

- Drill hole normal to the surface with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit, or with a core rig and an appropriately sized diamond core bit, to the required embedment depth. See tables describing setting details. (Drill bits must conform to ANSI B212-1994.)
- 2-4. **Clean hole:** Cleaning method has to be decided based on drilling method and borehole conditions (see flow chart above). Just before setting an anchor/rebar, the borehole must be free of dust and debris by one of the following methods:

Method 1 — for dry or water saturated concrete (refer to pictograms):

- **Blow** from the back of the borehole with oil-free compressed air (min. 90psi at 3.5 CFM (6 bar at 6 m³/h)) fully retracting the air extension 2 times until return air stream is free of noticeable dust.
- Brush 2 times with the specified brush size (brush Ø = borehole Ø) by inserting the round steel brush to the back of the borehole in a twisting motion and removing it. The brush should resist insertion into the borehole if not, the brush is too small and must be replaced with the proper brush diameter.

• Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Method 2 — for water filled boreholes, submerged concrete or diamond cored boreholes:

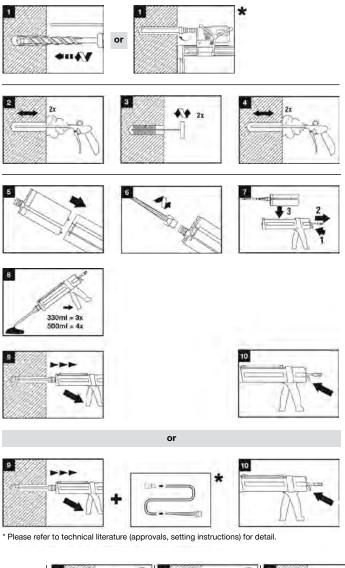
- Flush hole 2 times by inserting a water hose (water-line pressure) to the back of the borehole until water runs clear.
- Brush 2 times with the specified brush size (brush \emptyset = borehole \emptyset) by inserting the round steel brush to the back of the borehole with a twisting motion and removing it. The brush should resist insertion into the borehole if not, the brush is too small and must be replaced with the proper brush diameter.
- Flush again 2 times until water runs clear.
- Important! For diamond cored boreholes and if a dry borehole is required for injection (e.g. water flows into cleaned borehole), continue with borehole cleaning as described by method 1. Remove all standing water completely (i.e. vacuum, compressed air or other appropriate procedure). To attain a dried borehole, a Hilti HIT-DL air nozzle attachment is recommended for borehole depth up to 10 inch (250 mm) and required for borehole depth > 10 inch (250 mm).

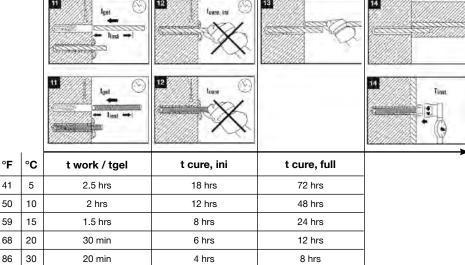
The borehole must be free of dust, debris, ice, oil, grease and other contaminants prior to adhesive injection. Inadequate borehole cleaning = poor load values

- 5. **Insert foil pack in foil pack holder**. Never use damaged foil packs and/or damaged or unclean foil pack holders.
- Tightly attach Hilti HIT-RE-M mixer to foil pack manifold. Attach new mixer prior to dispensing a new foil pack (snug fit). Do not modify the mixer in any way. Make sure the mixing element is in the mixer. Use only the mixer supplied with the adhesive.
- Insert foil pack holder with foil pack into HIT-dispenser. Push release trigger, retract plunger and insert foil pack holder into the appropriate Hilti dispenser.
- 8. Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. See pictogram 8 for discard quantities. If a new mixer is installed onto a previously-opened foil pack, the first trigger pulls must also be discarded as described above. For each new foil pack a new mixer must be used.
- 9-10. Inject adhesive from the back of the borehole without forming air voids:

Verify if borehole conditions have changed (e.g. water in the borehole) after cleaning. If yes, repeat cleaning according points 2 - 4.

- Inject the adhesive starting at the back of the borehole (use the extension for deep boreholes), slowly withdraw the mixer with each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the anchor/ rebar and the concrete is completely filled with adhesive along the embedment length. After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.
- Piston plug injection HIT-SZ/IP recommended for borehole depth > 10 inch/250 mm. For water filled boreholes or submerged concrete, and overhead installation the piston plugs are required. Assemble

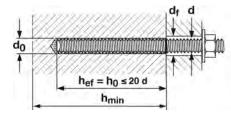

HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ/IP. Insert piston plug to back of the borehole and inject adhesive as described in the injection method above. During injection the piston plug will be naturally extruded out of the borehole by the adhesive pressure. (HILTI-SZ (IP) is not available or required for 7/16" or 10 mm diameter drilled hole.)


11. Insert anchor/rebar into borehole. Mark and set anchor/rebar to the required embedment depth. Before use, verify that the anchor/rebar is dry and free of oil and other contaminants. To ease installation, anchor/rebar may be slowly twisted as they are inserted. After installing an anchor/rebar, the annular gap must be completely filled with adhesive. If the borehole is not completely filled along the embedment depth the installation should be rejected. Hilti should be contacted for further information.

> Attention! For overhead applications take special care when inserting the anchor/rebar. Excess adhesive will be forced out of the borehole — take appropriate steps to prevent it from falling onto the installer. Position the anchor/rebar and secure it from moving/falling during the curing time (e.g. wedges). Observe the gel time "t gel", which varies according to temperature of base material. Minor adjustments to the anchor/rebar position may be performed during the gel time. See table.

- Do not disturb the anchor/rebar once the gel time "t gel" has elapsed until "t cure, ini" has passed.
- 13. Preparation work may continue for rebar applications. Between "t cure, ini" and "t cure, full" the adhesive has a limited load bearing capacity, do not apply a torque or load on the anchor/ rebar during this time.
- 14. **Apply load/torque after "t cure, full"** has passed, and the fixture to be attached has been positioned.

Partly used foil packs must be used up within four weeks. Leave the mixer attached to the foil pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor adhesive as described by point 8.


4 hrs

2 hrs

12 min

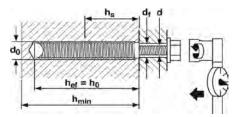

104 40

Table 1 — Setting Details of Hilti HIT-RE 500-SD with Threaded Rod

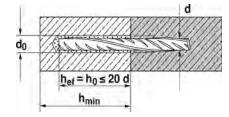

C	ł	d _。	h _{ef} min-n	nax	T	nst	d _f	h _{min}		
[inch]	[mm]	[inch]	[inch]	[mm]	[ft-lb]	[Nm]	[inch]	[inch]		
3/8	9.5	7/16	1-1/2 – 7 1/2	40 - 191	15	20	7/16	h _{ef} + 1-1/4		
1/2	12.7	9/16	2 – 10	51 - 254	30	41	9/16	(30 mm)		
5/8	15.9	3/4	2-1/2 - 12-1/2	64 - 318	60	81	11/16			
3/4	19.1	7/8	3 – 15	76 - 381	100	136	13/16			
7/8	22.2	1	3-1/2 - 17-1/2	89 - 445	125	169	15/16	$h_{ef} + 2 d_0$		
1	25.4	1-1/8	4 - 20	102 - 508	150	203	1-1/8			
1-1/4	31.8	1-3/8	5 – 25	127 - 635	200	271	1-3/8			
[m	m]	[mm]	[mm]		[Nm]		[mm]	[mm]		
Ν	18	10	40 – 16	60	10		9			
M	10	12	41 – 20	0	20		12	h _{ef} + 30		
M	12	14	48 – 24	0	4	0	14			
M	16	18	64 - 32	20	80		18			
M	20	24	80 - 400		150		22			
M	24	28	96 - 480		96 - 480 200		26	h _{ef} + 2 d ₀		
M	27	30	108 – 540		270		108 – 540 270 30			
M	30	35	120 - 6	00	30	00	33			

Table 2 - Setting Details of Hilti HIT-RE 500-SD with HIS-N and HIS-RN Inserts

0	d	d _。	h	ef	T	nst	d _f	h,	nin
[inch]	[mm]	[inch]	[inch]	[mm]	[ft-lb]	[Nm]	[inch]	[inch]	[mm]
3/8	9.5	11/16	4 3/8	110	15	20	7/16	5-3/4	150
1/2	12.7	7/8	5	125	30	41	9/16	6-3/4	170
5/8	15.9	1-1/8	6 3/4	170	60	81	11/16	9	230
3/4	19.1	1-1/4	8-1/8	205	100	136	13/16	10-3/4	270
[m	im]	[mm]	[m	m]	[N	m]	[mm]	[m	m]
N	18	14	9	0	1	0	9	12	20
M	10	18	11	10	2	0	12	15	50
M	12	22	12	25	4	0	14	17	'0
M	16	28	17	70	8	0	18	23	30
M	20	32	20)5	15	50	22	27	'0

Table 3 — Setting Details of Hilti HIT-RE 500-SD with Reinforcement Bars

d	d _o 1	h _{ef} min-n	nax	h _{min}
US rebar	[inch]	[inch]	[mm]	[inch]
# 3	1/2	1-1/2 – 7-1/2	40 – 191	h _{ef} + 1-1/4
# 4	5/8	2 - 10	51 – 254	11 _{ef} 1 - 1/4
# 5	3/4	2-1/2 - 12-1/2	64 - 318	
# 6	7/8	3 – 15	76 - 381	
# 7	1	3-1/2 - 17-1/2	89 - 445	$h_{ef} + 2 d_{o}$
# 8	1-1/8	4 - 20	102 – 508	n _{ef} ' Z u _o
# 9	1-3/8	4-1/2 - 22-1/2	114 – 572	
# 10	1-1/2	5 - 25	127 - 635	
Rebar [mm]	[mm]	[mm]		[mm]
8	12	40 – 16	60	
10	14	41 – 20	00	h _{ef} + 30
12	16	48 - 240		
14	18	56 – 280		
16	20	64 - 32	20	
20	25	80 - 40	00	h _{ef} + 2 d _o
25	32	100 – 5	00	
28	35	112 – 5	60	
32	40	128 – 6	40	
CA rebar	[inch]	[mm]		[mm]
10 M	9/16	45 - 226		h _{ef} + 30 mm
15 M	3/4	64 - 32	20	
20 M	1	78 – 39	0	b + 2 d
25 M	1-1/4	101 – 5	04	h _{ef} + 2 d _o
30 M	1-1/2	120 – 5	98	

1 Rebar diameter may vary. Use smallest diameter which will accomodate rebar.

3.2.4.6 Ordering Information

HIT-RE 500-SD Epoxy Adhesive Anchor System

- First adhesive anchor to comply with the latest building code offering designers a strength
- design solution for anchors and rebarEnables threaded rod and dowelling
- applications in seismic design conditions under the latest building codes

2003 IBC" 2006 IBC" 2009 IBC Compliant Anchor Compliant Anchor

Description

HIT-RE 500-SD (11.1 fl oz/330 ml) – 1 pack Includes 1 mixer and 3/8" filler tube per package HIT-RE 500-SD (11.1 fl oz/330 ml) MC – 25 packs Includes 1 mixer and 3/8" filler tube per package HIT-RE 500-SD (11.1 fl oz/330 ml) Includes 1 MC and mixer and and choice of MD 2000 or MD 2500 dispenser HIT-RE 500-SD (16.9 fl oz/500 ml) MC – 20 packs Includes 1 mixer and 3/8" filler tube per package HIT-RE 500-SD (16.9 fl oz/500 ml) Includes 2 MC and MD 2500 dispenser HIT-RE 500-SD (16.9 fl oz/500 ml) Includes 5 MC and ED 3500 dispenser 2.0 Ah Kit **Dispensers**

Battery Powered

Description

ED 3500 2.0 Ah NiCd Kit Includes dispenser, (2) 2.0-Ah NiCd battery, C 7/24 standard charger and accessories in an impact-resistant plastic tool box ED 3500 Dispenser Includes dispenser only in cardboard box SFB 121 2.0-Ah NiCd Battery for ED 3500 C 7/24 Standard Charger for ED 3500 Manual

Description

MD 2500 Manual Dispenser with Foil Pack Holder For use with HIT 11.1 fl oz/330ml and 16.9oz/500ml foil packs MD 2500 Manual Dispenser with Foil Pack Holder Replacement for MD 2500 and ED 3500

Hole Cleaning/Injection Accessories

Imperial

Hole Dia. (d₀)	Round Brush	Injection Piston	Air Nozzle
Ø [inch]	HIT-RB	HIT-SZ (IP)	HIT-DL
7/16	7/16"		-
1/2	1/2"	1/2"	1/2"
9/16	9/16"	9/16"	9/16"
5/8	5/8"	5/8"	9/16"
11/16	11/16"	11/16"	11/16"
3/4	3/4"	3/4"	3/4"
7/8	7/8"	7/8"	7/8"
1	1"	1"	1"
1-1/8	1-1/8"	1-1/8"	1"
1-1/4	1-1/4"	1-1/4"	1"
1-3/8	1-3/8"	1-3/8"	1-3/8"
1-1/2	1-1/2"	1-1/2"	1-3/8"
1-3/4	1-3/4"	1-3/4"	1-3/8"

Contact Hilti for

a complete listing of additional accessories and extensions for air nozzles, brushes and injection pistons to handle embedment.

Metric

Metric			
Hole Dia. (d₀)	Round Brush	Injection Piston	Air Nozzle
Ø [mm]	HIT-RB	HIT-SZ (IP)	HIT-DL
10	10	-	-
12	8/12	8/12	8/12
14	10/14	10/14	10/14
16	12/16	12/16	12/16
18	14/18	14/18	14/18
20	16/20	16/20	16/20
22	18/22	18/22	16/20
24	24	24	16/20
25	20/25	20/25	20/25
28	28	28	20/25
30	30	30	20/25
32	25/32	25/32	25/32
35	35	35	25/32
37	37	37	25/32
40	40	40	25/32
42	42	42	25/32
45	45	45	25/32
47	47	47	25/32
52	52	52	25/32
55	55	55	25/32

Technical Data

Product	Epoxy Adhesive			
Base material temperature	41°F to 120°F (+5°C to 49°C)			
Diameter range	3/8" to 1-1/4"			
Listings/Approvals				
ICC-ES	ESR 2322			
NSF/ANSI standard 61 Certification for potable water				
Package volume				
 Volume of HIT-RE 500-SD 11.1 fl oz/330 ml foil pack is 20.1 in³ 				

Volume of HII-RE 500-SD 11.1fl oz/330 ml foil pack is 20.1 in³
 Volume of HIT-RE 500-SD 16.9fl oz/500 ml foil pack is 30.5 in³

Gel/Full Cure Time Table (Approximate)

Base Material Temperature			
°F	°C		
41	5	2.5 hrs	72 hrs
50	10	2 hrs	48 hrs
59	15	1.5 hrs	24 hrs
68	20	30 min	12 hrs
86	30	20 min	8 hrs
104	40	12 min	4 hrs

Refer to Section 3.2.6.5 for ordering information of HAS threaded rods and HIS inserts.

HIT-RB (Round Brush)

HIT-SZ (IP) (Injection Piston)

HIT-DL (Air Nozzle)

